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A solution for three-dimensional vortex flows 
with strong circulation 

By W. S. LEWELLEN 
Aerospace Corporation, Los Angeles 

(Received 7 April 1962) 

The Navier-Stokes equations for a viscous, incompressible fluid are considered for 
a steady, axisymmetric flow composed of a strong rotation combined with radial 
sink flow which exhausts axially inside a finite radius. The equations are reduced 
to two coupled partial differential equations in terms of the stream function and 
circulation. The equations contain three dimensionless parameters: the radial 
Reynolds number, a characteristic ratio of mass flow per unit length to circula- 
tion, and a characteristic ratio of an axial dimension to a radial dimension. The 
product of these last two dimensionless parameters is used as a new expansion 
parameter for generating an asymptotic series solution. To zeroth order in this 
parameter, the solution for the stream function is a linear distribution between 
two axial boundary values. First-order correction terms are calculated for a 
specific example. 

In  discussing these equations the limitations of the exact solutions due to 
Donaldson & Sullivan (1960) and Long (1961) are noted. These exact solutions 
are contrasted with the approximate treatment of this type of vortex originated 
by Einstein & Li (1951) and generalized by Deissler & Perlmutter (1958). 

1. Introduction 
An extensive historical review of analytical work on vortical flows has been 

given by Donaldson & Sullivan (1960). Much of this work was performed in an 
effort to understand the Ranque-Hilsch effect (Westley 1954). Other studies 
have been stimulated by vortical storms occurring in nature (Long 1958, 1961) 
and by concepts of advanced space propulsion (Kerrebrock & Meghreblian 1961; 
Rosenzweig 1961) and power generation (Lewellen 1960; McCune & Donaldson 
1960) systems. The type of flow under consideration is shown in figure 1. The 
fluid enters tangentially with high velocity, spirals radially inward, and exits 
axially a t  some smaller radius. In  practice, such a vortex may be generated in 
a cylindrical container or as part of an array of vortices (Rosenzweig 1961). 

In  spite of the large number of analytical and experimental investigations of 
vortices, there still exists a great deal of uncertainty concerning this complex 
flow pattern. Except under certain simple conditions, exact solutions of the 
full Navier-Stokes equations are inaccessible, so that approximate techniques 
must be used to interpret experimental results. Exact solutions have been given 
by Donaldson & Sullivan (1960), Long (1961)) and Rott (1958). 
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An approximate treatment of vortices of this type was originated by Einstein 
& Li (1951) and somewhat generalized by Deissler & Perlmutter (1958). In these 
analyses, the axial velocity is arbitrarily taken as a discontinuous function of 
the radius, and has a jump at  the radius of the exhaust. Continuity is then used 
to determine a radial velocity which is independent of the axial coordinate. The 
tangential velocity is assumed to be a function of the radius only and can then 
be determined directly from the tangential momentum equation by simple 
quadrature. 

FIGURE 1. Sketch of vortex flow in which the fluid enters tangentially with high 
velocity, spirals radially inward and exits axially at  some smaller radius. 

The most serious weakness of this approach is that no consideration is given 
to the axial momentum equation. Actually, Donaldson & Sullivan (1960) have 
shown that, when the assumption is made that the radial and tangential velocities 
are functions of the radius only, the axial momentum equation determines the 
axial velocity. Unfortunately, the flows so determined cannot be made to 
satisfy the boundary conditions corresponding to the desired geometry. The 
present analysis is an attempt to clarify the relationship of the approximate 
solutions to the existing exact solutions and to provide a mathematically con- 
sistent approximate solution starting from the complete Navier-Stokes equations. 
As a result of the present study, it is shown that, when the ratio of sink flow to 
circulation is sufficiently small, the approximation of Einstein & Li is justified. 
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2. Basic equations 

viscosity in cylindrical co-ordinates, assuming axial symmetry, are 
The equations of steady motion for an incompressible fluid with constant 

(4) 

where r is the radial co-ordinate, z the axial co-ordinate, u, v and w the radial, 
tangential and axial components of velocity respectively, p the pressure, p the 
density and v the kinematic viscosity. 

The number of dependent variables may be reduced by defining the usual 
axisymmetric stream function 

and by eliminating the pressure by cross-differentiation of equations (2) and (4). 
The equations of motion are then 

A 

where l? = vr. ( 8 )  

Equations (6) and (7) can be somewhat simplified by writing the equations 
in terms of r2. For convenience, the following dimensionless quantities are also 

(9) 
introduced 

where ro, I, l?, and Q are appropriate dimensional quantities. For the vortex 
sketched in figure 1 a suitable r,, is the radius of the exhaust hole, I the length of 
the vortex chamber, 2nr ,  the circulation at the outer edge and 2nQ the volume 
flow per unit length. 

A 

q = r2/r& .g = 211, = l?/ra, @ = $/Ql, 
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The resulting equations are 

and 

with Q/v = N ,  (ro/Z)2 = a and (QZ/rmr,,)2 = E.  Physically it is seen that the flow 
is governed by the three dimensionless parameters; Q/v the radial Reynolds 
number; ro/Z, a ratio of characteristic lengths; and Q/rm, the ratio of volume flow 
per unit length to circulation. 

3. Existing exact solutions 
Donaldson & Sullivan (1960) have made a thorough analysis of equations (10) 

and (1 1) for the special case in which I? is independent of x and $ is the product 
of z and a function of r2, i.e. 

(12) r = r(7). 
and 9 = U s ) .  (13) 

For this case the equations are decoupled and yield the following equation for f: 

With f given, I’ is determined by equation (10); thus 

27r”- ~ f r ’  = 0. (15) 

It is immediately obvious that the restrictions placed on the flow for this case 
have eliminated both E and a. Equation (15) is readily integrable, but, except 
for a few special cases [such as f = 7 (Rott 1958)], (14) must be solved by numerical 
means. A great deal can be learned about these solutions, however, without 
actually solving the equations. From (5) and (13) it  is seen that u is also indepen- 
dent of x and, thus, from equation (2): 

azplaraz = 0. (16) 

It is thus impossible for solutions of this type to satisfy any problem in which 
the axial boundary conditions force a radial variation in the axial pressure 
gradient. Even though the solutions presented by Donaldson & Sullivan display 
a very interesting cellular structure and provide considerable insight into vortex 
flows in general, they cannot be applied directly to most real flows occurring in 
nature or in the laboratory. It is necessary to know how small variations from 
the assumed form, (12) and (13), affect the solutions. 

Long (1958) found that the equations of motion could be reduced to ordinary 
differential equations in terms of the similarity variable 

x* = r / z ,  
when = r(x*) and 9 = lJ(x*). 
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Because of the symmetry in r it might be suspected that the reduction would 
also work for 

2 

= (ii) = 
when I ? =  r ( x )  and $ = <f(s). 

t2 
With this latter transformation, (10) and (1  1) become 

2xr” - Nfrt + 43171 + zx2rt’) = 0. 

fyr + 3 f y  - - (zfiv + z y )  

(19) 

2 
N 

+ [Zx:  ff”‘ + 6f‘f“ +ff” - 3f ’2] 

- - [ (4x+2a~~)f’Y+(14x:+ a 12CtX2)f”’ 
N 

Equation (19) is integrable for in terms off,  but when coupled with ( Z O ) ,  
numerical methods are required to solve the system. Long (1961) presented 
numerical solutions for this flow within a core boundary layer, i.e. a < 1. 

Without actually solving these equations, it can be shown that a particular 
feature of these solutions is that the axial velocities are of the same order as the 
tangential velocities even at  large radii (Long 1958). Furthermore, with a small 
and IN1 of order one or larger, e is restricted to values of order one. This last 
statement can be seen by noting that for any real flow, r must go to zero on the 
axis, and thus I“ is of order one. Consequently, for f and its derivatives to be of 
order one, (20) requires that e be of order one, i.e. &/I?, and roll are of the same 
order. The case of interest here, that of radial sink flow with strong circulation 
which turns and exhausts axially near the centre line, is thus not included in this 
class of solutions. 

4. New expansion procedure 
Examining ( l l ) ,  it can be seen that even a very small change in ?? with 6 

could effect a profound change on $if the parameter (QZ/rm ro)2 is equally small. 
For many physical flows of interest, &/I?, < so that even for moderately 
large Z/ro, e is small. Equation (1 1) thus suggests a series expansion of I? and $ 
in e with the leading term of r independent of the axial co-ordinate. 

Formally, let us assume 
00 

r = I: r n ( T , t )  en, (21) 
n = 0  

Substituting into (10) and (11) and equating coefficients of the powers of e, 
yields for eo from (1 1) 

(23) 
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Therefore ro = ro(7), 
and from (lo),  using (24): 

It follows that 
27r; - Nr;, a$,laC = 0. 

$0 = f o o ( 7 )  + tfOl(T), 
z7r; - ivyol r; = 0. and 

(24) 

To this order of approximation then, anyf,, can be assumed and Po found by 
integrating (27). This is essentially what is done in generating the approximate 
solutions of Einstein & Li (1951) andDeissler &Perlmutter (1958). By judiciously 
choosing fol a wide range of boundary conditions can be satisfied. The crucial 
question is, how accurate are the resulting solutions? It might be expected that 
the error involved is of order E ,  since this is the order of terms neglected in the 
equations of motion, but this is true only if the assumed series for r and $ in 
e are convergent in some sense. 

The next higher order set of equations, found by equating coefficients of E ,  is 

(28) 

27r;z - ~f,, ri2 - 3flf13 r; + 2iyf,; rl2 = 0, (30) 
27ri1 - wOl ril - mflZ r; + Z N ~ ; ~  r12 + N ~ A  rll = 0,  (31) 

27r;o - ~j~~ rio - ~ f i ~  r; + ~ j k  rll + arlz = 0,  (32) 
with rl = FlO(7) + Wll(7) + t2rlz(7), (33) 

$1 = flO(7) + tfll(7) + C2fi2(7) + t3f13(7)' (34) 

Equations (27) through (32) provide a set of 6 equations with 9 unknowns.? 
This freedom in the truncated series can be used to advantage to provide the 
desired freedom in the axial boundary conditions. That is, the set can be made 
complete by supplying information at one or more axial positions in the form of 
boundary conditions. 

Possibly the most interesting problem of this nature is the boundary-value 
problem for the stream function, that is, to have given 

and 
(35) 
(36) 

By a suitable choice of co-ordinate axis and the dimensional parameter I ,  one 
can set to = 0 and tl = 1 with no loss in generality. If these boundary conditions 
are independent of E ,  they correspond to the following equations : 

The possibility of terminating these series in such a way as to obtain an exact solution 
is discussed by Lewellen (1962). 
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Equations (37)-(40) provide exactly the right number of equations to make the 
set of equations obtained to any specified order of e a complete set. 

If O ( E )  and higher are ignored the system of equations reduces to (27), (37) 
and (38). That is, one is justified in specifying the stream function and merely 
solving for the corresponding circulation profile, as is done by Einstein & Li, 
and Deissler & Perlmutter. Physically, this implies that, in flows of vanishingly 
small 8, the stream function is completely specified by its boundary conditions. 
It is merely a linear extrapolation between two given axial boundary values 
since the equation of motion to be satisfied by it is of higher order in 8. 

At the next level of approximation, that is keeping terms of order c while 
neglecting those of higher order, the system of equations is composed of (27)-(32), 
(37), (38), and from (39) and (40) the two additional equations 

fll + f l Z  +f13 = (41) 

f10 = 0. (42) 

This forms a complete set of 10 equations and 10 unknowns. However, the 
equations are all decoupled and can therefore be solved one at  a time. The only 
unusual feature of the system is that most of the equations call for differentiation 
rather than integration. The equations are solved in the following sequence: 
(37), (38), and (42) givefoo,fol andf,, directly; equation (27) is then integrated 
to give rOl. Formally, the integration of (27) leads to 

s” [ exp w so’ 7-lfo1(T) $71 dt 

Iow [exp w / ~ 7 - l f o 1 ( ~ )  d7] dt ’ 
(43) 

0 ro = 

with ro(c0) = 1. (The boundary conditions in 7 will be discussed later.) The term 
r12 is then found from (28) by differentiating fol. Similarly, rll, f13 and f12 are 
found from (29), (30), and (31) respectively by differentiating known functions. 
Nowf,, can be determined by (41), and (32) integrated to yield Flo. The integral 
for rl0 in terms of the other variables is 

with 

Some care must be exercised in carrying through this process since the solution 
involves several differentiations of the prescribed boundary conditions, go and gl. 
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Clearly, from (1 1) these functions must be differentiable a t  least 6 times, but an 
even more stringent requirement is that the boundary values of I?,,, r12, f13 
andf,, at 7 = 0 and 7 = co must derive from the form of go and 9,. 

To continue the discussion, it is necessary to examine the boundary con- 
ditions at  7 = 0 and 7 = co. From the definitions of $ and r, it is obvious that, 
in order to keep velocities finite on the axis, it  is necessary to have 

The boundary conditions at the outer radius of any region are somewhat more 
arbitrary. The conditions imposed by Donaldson & Sullivan were 

r ( r 0 , z )  = const., -- = const., YJ = 0. a @ l  r=ro a~ r=re 

To these conditions is added the condition 

since this is the condition which could not be specified by Donaldson & Sullivan 
without arriving at the trivial solution @ = 0, as has been discussed earlier. These 
conditions correspond to the flows which possess a rather strong axial pressure 
gradient along the central axis which tapers off asymptotically to zero at  some 
larger radius. This represents flows that consist of circulation imposed upon radial 
sink flow at large radius which turn to stagnation flow near the centreline, i.e. 
flow in a container in which the fluid is forced in uniformly at some radius and 
removed through a hole of smaller radius at  one end (see figure 1). These con- 
ditions might also approximate some flows in nature such as tornadoes, dust 
devils and waterspouts. 

From (45)-(47) the corresponding conditions on Fnk and f n k  can be derived. 
Applying conditions at large radius in an asymptotic sense, they are: 

(48) i rnk(o)  = f n k ( O )  = k), 
ro(co) = 1 =fo,(m) (foo(m) = O h  

r n k ( a )  = f n k ( a )  = 0 (n * 0). 

Returning to the discussion of the restrictions on the form of go and g,, it  can 
be seen that the conditions imposed by (48) on rll, r12, f13 and f12 must be in- 
herent in the form of go and g,. It can be shown that the boundary conditions at 
7 = 0 are satisfied if go and g, are analytic functions of 7 in some neighbourhood 
of 7 = 0 and 

(49) 

At the other end, as 7 -f m, a form which satisfies (48) and has sufficient generality 
for most purposes is 

with mo and m, arbitrary, since all multiples of the higher derivatives of these 
functions go to zero a t  infinity. 
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To be more specific let us consider an example in which the solution will be 
carried through to O(s) .  To simplify the problem somewhat consider a plane of 
symmetry at [ = 0. This immediately implies that foo = go = 0. Also from (29) 
and (31), rll = f l z  = 0. Consider the stream function at  [ = 1 to be specified as 
g1 = 1 - e-'1 and the boundary conditions at r = 00 and r = 0 to be those given in 
(48). The flow which closely approximates the flow sketched in figure 1, if the 
effect of surface boundary layers is neglected, is now completely determined. 

"0 2 4 6 8 10 12 

7 
FIGURE 2. Zeroth-order stream function and circulation as functions of 7 for N = - 4  
and the axial boundary conditions of go = 0 and g1 = 1 ---)I. 

Equation (38) yieldsf,,, (43) yields To, (28) r12, (30)f1,, (41)fll and (44)yields I?,,,. 
These functions are plotted in figures 2 to 4. From (44) the direct relationship 
of a to rl0 can be indicated by writing rl0 = rloo + arlOl. 

Of the three dimensionless flow variables, a, N and E ,  only the N-dependence 
remains entangled in the functions. The functional dependence on a and E has 
been factored out so that figures 2 to 4 are valid for arbitrary a and E .  Of course, 
it  must be remembered that this solution neglects O(@)  terms in the equations 
of motion. N = - 4 was chosen for this computation as a representative value 
of the radial Reynolds number. 

The example just cited could be carried to higher order in E ,  but not without 
considerable numerical effort. It can be shown (Lewellen 1962) that such a 
procedure does indeed lead to a series which is asymptotically convergent in 
the sense that an E can be found which makes the ratio of the (n i- 1)th term to the 
nth term as small as desired for any finite n. 

An interesting facet of this proof is the manner in which N affects the con- 
vergence of the series. It is seen that, as N becomes large negatively, the con- 
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vergence conditions upon e become more restrictive. That is, as the flow becomes 
more nearly inviscid, the circulation equation tends to decouple from that of 
the stream function. The circulation is a constant at  large radius independent 

0 

FIGURE 3. ,fl and rl as functions of 3 for N = - 4, go = 0 and g, = 1 - e-7. 

r 
FIGURE 4. Tl0 = rloo + arlOl as a function of 71 for N = - 4, go = 0 and g1 = 1 - e-V. 

of the axial dimension, and as the viscosity becomes smaller the circulation tends 
to remain constant to  smaller radii. But as long as there is no radial variation, 
there can be no axial variation and thus from (1 1) the circulation can have no 
effect on the stream function, unless e approaches zero. This series approach thus 
requires that (@/Fa ro )  approaches zero more rapidly than (&/v) approaches 
negative infinity. 
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It should be noted that to obtain (37) to (40) it  was assumed that the boundary 
conditions, (35) and (36), were independent of 8. If this is not true it is neces- 
sary to know go and gl, as functions of 8, to the same order that it is desired to 
determine @ and I?. It is physically reasonable that the solution be determined 
only to the same degree to which the boundary conditions are specified. 

5. Axial boundary conditions 
The problem posed in the introduction is to find a vortex solution which will 

permit certain boundary conditions to  be satisfied, i.e. the problem of interest 
is a boundary-value problem. Although other conditions may be imposed to 
define a problem which could be solved in a similar manner, the boundary-value 
problem on the stream function has been chosen here as the most interesting, 
physically. For this problem it is necessary to specify the stream function at  two 
axial positions as well as at two radial positions. 

In  the exact solutions of Donaldson & Sullivan, and also that of Long, the 
question of axial boundary conditions does not arise. This is a direct consequence 
of the restrictive requirements imposed upon the flow in both cases. They find 
particular modes of the axial velocity which satisfy the equations of motion and 
certain radial boundary conditions. Donaldson & Sullivan give the modes which 
are of the form zf(r) (with I? = I?(r)) and Long deals with those which are of the 
form (l/r)f(r/z) (with I? = I?(r/z)). These special forms are not the only possi- 
bilities. As can be readily checked in (10) and (1 l), taking I' = zI?(r) would lead 
to  still more modes of w, of the form zfl(r) +fz(r). In  addition, within the present 
series approach, it is possible to find first-order similar solutions [i.e. solutions 
which are similar neglecting order €2 terms (Lewellen 1962)l. Persons with in- 
genuity and persistence might find other particular modes which satisfy the 
equations of motion. However, due to  the non-linearity of the equations, these 
modes cannot have the same importance as they enjoy in linear analyses. There 
is no way of using these particular functions to build up solutions to fit general 
boundary conditions. The functions can only be used individually and, therefore, 
do not permit any freedom in the axial boundary conditions. 

In  contrast, the present method provides a general solution capable of satis- 
fying axial boundary conditions which possess certain analytical forms. By 
the same token this method only determines the solution uniquely to the same 
degree to which these boundary conditions are uniquely specified. 

The question of what conditions are physically imposed in any particular 
problem is not as straightforward as it might first appear. This difficulty is 
caused by the fact that the present method cannot be carried into the boundary 
layers usually found in the immediate neighbourhood of physical axial boun- 
daries. Within these thin regions, I' must go from order one at the outside to 
zero at the inside (unless the boundary itself is rotating). From this and the 
boundary-layer equations, it  can be deduced that u/v = O( 1)  within this boun- 
dary layer (Mack 1962), thus invalidating the series solution in powers of Q/Fm. 
The boundary condition upon the present solution must be applied outside these 
boundary layers. But the usual hydrodynamic approximation of ignoring the in- 
fluence of the boundary-layer flow on the outer flow is very poor for this particular 
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problem since what might be termed secondary flow induced by the boundary 
layer can dramatically change the boundary conditions and hence produce a major 
effect on the outside flow. 

A demonstration of this phenomenon is shown in figure 5, plate 1. Ink has been 
introduced into a water vortex near the bottom wall with a small hypodermic 
tube. The ink is carried into the end-wall boundary layer and then ejected up- 
ward near the +th in. diameter exhaust hole at the centre. Some of the ink reaches 
the top where it interacts with the top end-wall boundary layer before it returns 
to the bottom to be exhausted out of the box. The flow is quite different from the 
simple picture which would exist without the boundary layers. 

Of course, the boundary-layer flow in turn depends upon the characteristics 
of the outer flow. This problem requires a delicate matching of the flows inside 
and outside the boundary layer. It is necessary to have the boundary-layer 
solution correct to the same order of E to which it is desired to find the solution 
in the main body of the flow. 

Ignoring the inherent difficulties presented by the boundary layers, i.e. 
assuming properly rotating boundaries, there is still some ambiguity con- 
cerning the exhaust hole. Rotation of the flow forces strong radial variations of 
the pressure even within the exhaust radius. Depending upon the relation of 
the pressure inside the vortex to that outside the exhaust there may be flow 
sucked into the vortex along the axis from outside. Rather than prescribing 
a stream function as a boundary condition, it would seem appropriate here to 
apply some type of integral condition on the total pressure over this area. More 
work is needed to clarify the influence of the ambient pressure at  the exhaust 
on the flow pattern within the vortex. 

6. Conclusions 
A solution of the axisymmetric, three-dimensional vortex flow pattern has 

been found in the form of an asymptotic series for small E = (QZ/r'mro)z. To 
zeroth order in E the solution for the stream function is simply a linear distribu- 
tion between two axial boundary values. With this stream function, two quad- 
ratures yield the zeroth order circulation, which is independent of the axial 
co-ordinate. Thus to zeroth order in E the family of solutions considered by 
Donaldson & Sullivan has been extended to include not only their cases of 
constant axial pressure but almost any radial variation of axial pressure gradient. 

The method for carrying the solution to higher order has been described and 
an illustrative example computed through first-order terms. 

The accuracy of the solution is principally limited by the knowledge of the 
axial boundary conditions on the stream function. In  most physical occurrences 
these boundary conditions must be found by solving both a boundary-layer 
problem on the surfaces and the recirculation problem of the exhaust. 
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FIGVRE 5,  PLATE 1.  Ink injected into a water vortex near the bottom wall demonstrating 
the dramatic effect on the flow produced by the boundary layer. 
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